
Neural Network Representation of External Tilt-Rotor Noise 
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Results from a neural network study of the noise data from a full-scale XV-15 tilt-rotor are  presented. Specifically, this 
database was acquired during the 1998 NASA Ames 80- by 120-foot wind tunnel test to  estahlish the blade-vortex-interaction 
noisesignature. The present study has threeobjectives: 1) Toconduet anenral-net\vork-based quality assessment of tltenoise 
data; 2) To obtain neural network representations of the noise data and to  demonstrate their sensitivity to  test conditions; 
3) To obtain neural-network-based noise predictions. Overall, neural networks are  successfully used to  assess the quality 
of the noise data and to  represent the complete database as  well a s  to  predict tilt-rotor noise using the minimal amount of 
input data. As major findings, the data quality is found to he acceptable, and accurate neural network representations are 
obtained for the test-condition-sensitivity cases. 

Notation 

lator disc area, nR2, m2 
blade vortex interaction 
blade-vortex-interaction sound pressure level, 30th to 150th 
rot?! harmonics, dB 
rotor thrust coefficient, th rus t lp~~ ' , ,  
multiple-input, multiple-output 
multiple-input, single-output 
neural network processing element 
rotor radius, m 
radial-basis function 
wind tunnel airspeed, mls 
blade tip speed, nR,  mls 
rotor shaft angle, positive nose up, deg 
lntur advance ratio, Vcos a,/(QR) 
rotor solidity ratio 
mtor rotation speed, radlsec 

Introduction 

Growing public sensitivity to rotorcrafl noise has forced the rotor- 
craft community (industry, government, and academia) to be innovative 
in reducing rotorcraft external noise (Ref. 1). Tilt-rotors are in a class 
by themselves, and their acceptance by the public is a very important 
and a much-awaited milestone. To facilitate tilt-rotor noise reduction ef- 
forts, it is i~npo~iant  to develop an analytical capability that enables data 
quality assessment and representation of experimental tilt-rotor noise 
databases. Such representations could potentially be used to provide tilt- 
rotor pilols with near-real-time noise predictions of their aircraft noisc 

Rased on a paper prescnled at the 6th An~erican Institute of Aeroniullics 
and AstranaulicsIConfederation of European Aerospace Societies Aeroacouslics 
Canfercnce, Maui,  Hawaii, June. 2000. Manuscript received January 2001; 
accepted Februiuy ZWZ. 

exposure. This information could then be used to modify flight condi- 
tions and trajectories to minimize the exposure to noise sensitive areas. 
This would, in turn, help to insure the aircraft's acceptance by the nearby 
communities. 

Rotorcraft noise measurement and prediction involve a high level of 
complexity, and it is difficult at times to know even lieuristically the 
variation of the test data with changes in the operating conditions. Since 
the test datatrendslnay benew and without precedent, it becomesdifficult 
to isolate expeditiously bad data points from the good points. As such, 
it is more difficult to interpret the quality of the measured data and the 
trends projected by wind tunnel tests. 

This paper presents results from a neural network study conducted 
to assess the quality of full-scale wind tunnel tilt-rotor noise data, and 
also to represent such data. These wind tunnel data were acquired from a 
test pcrforn~ed in support of NASA's Short Haul Civil Tilt-rotor (SHCT) 
program. Moreover, neural networkstudies on rotorcraft performanceand 
dynamics had also been initiated in the ArmylNASA Rotorcraft Division 
at the NASA Ames Research Center; for details see Refs. 2 to 7. The 
present work on tilt rotor noise is motivated by the experience gained 
from theseneural networks studies.Theuse of neural networksisjustified 
because of theirmulti-dimensional, nonlinear curve fitting characteristics 
as well. 

Significantly, the present work isagenericmethodology,not restricted 
to the presently considered tilt-rotor configuration. The focus here is to 
demonstrate why this gencric ~liethudoiogy offers considerable promise. 
Accordingly, the specific objectives are: 

I) To conduct data quality assessment of the noise data in two parts: 
(a) coarse data quality checks, and (b) more involved fine data quality . ~ 

checks. 
2) To obtain neural-network-based representations of the test data in 

twoparts: (a) to demonstrate the sensitivity of the noise to test parameters 
such as advance ratio and thlust coefficient, and (b) to produce noise 
footprint plots, i.e.. contour plots, using neural-network-based results. 
and separately, tostudy theimplicationsofusingSO% oftheavailabledata 
for neural network training purposes. 
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3) To predict tilt-rotor noise at a test cotldition not included in the 
neural network training database. This includes the following: modeling 
and prediction of multiple noise variations using a minimum amount of 
inputdata. The input dataconsistof thedefiningtest condition parameters 
and the corresponding, unique reference noise curves. 

Tilt-Rotor Test Database Description 

Full-scale XV-15 tilt-rotor noise test data for forward flight conditions 
(Ref. 8) areanalyzed in this paper. As noted in  Ref. 8, theoverall objective 
in acquiring the above data was to establish the blade vortex interaction 
(BVI) noise signature of a full-scale tilt-rotor. The wind tunnel testing 
approach was described in Refs. 8 and 9. The 25-ft diameter right hand, 
three-bladed tilbrotor was installed on the NASA Atnes Rotor Test Ao- 
paratus and tested in the Ames 80- by 120-foot Wind Tunnel. The shaft 
angle was varied from -15 deg (nose down) to +I5 deg, from a vertical 
orientation. The present study considers noise test data with a rotor tip 
Mach number of 0.69. 

Neural Network Approach 

To capture accurately the required finnctional dependencies, the neural 
network inputs must be carefully selected and account for all important 
physical traits that are specific to the application. In the present wind 
tunnel noise application, the important physical parameters are associ- 
ated with the wind tunnel test conditions. Thus, there are five neural 
network inputs: advance ratio. p, shafl angle, a,, thrust coefficient ratio, 
C,/o, the microphone traverse location, and the microphone position 
within the traverse. The important auributes of a neural network are its 
type (radial-basis function network or back-propagation network, etc.) 
and its complexity (i.e., the number of processing elements (PEs) and 
the number of hidden layers). The present overall neural network mod- 
eling approach (Refs. 2-7) consists of first determining the best type of 
neural network to be used and then simplifying the network as much as 
practical 

Determining the best type of neural network usually involves select- 
ing either a radial-basis function (RBF) or a back-propagation network. 
Reference 10 notes that the RBF network (Moody-Darken version) "can 
be used in most situations in which one would consider using a back- 
propagation network:' In the present study, both types of networks are 
used. For the back-propagation network, the hyperbolic tangent is wed 
as the basis function and the extended-delta-bar-delta (EDBD) algorithtn 
is used as the learning rule (Ref. 10). 

Simplifying the network involves reducing the number of PEs and in 
a few cases, the number of hidden layers. The number of PEs required 
depends on the specific application. The determination of the appropriate 
number of PEs is done by starting with a minimum number of PEs. 
Additional PEs are added to improve neural network performance by 
reducing the RMS error between the test data and the neural network 
predictions. The criteria used to determine that there are enough PEs is 
that the RMS error stops changing (and is sufticiently small). Typically, 
five PEs are initially added at each step in this process. Adding two or 
three PEs at a time "fine-tunes" the neural network. The notation used 
in this paper to characterize a neural network is described as follows. 
An architecture such as "4-25-5-1" refers to a neural network with four 
inputs, twenty five processing elements (PEs) in the first hidden layer, 
five PEs in the second hidden layer, and one output. 

If the correlation plot, comparing measured and predicted values, 
shows only small deviations from the 45-deg reference line, the neural 
network has produced an acceptable representation of the subject test 
data. If the plot shows points well off of the 45-deg line, bad test data 

(or poor quality test data) may exist in the database (Ref. 2). A detailed 
examination of the subject test database is then required to identify the 
sou~ce(s) of the errors associated with these test data. The analyst should 
not solely rely on the neural network basedcorrelationpmcedure to elim- 
inate test data. This procedure, however, contributes to data assessment, 
and an example from a previous study is briefly discussed as follows. 
In Ref. 2 (Figs. I I and 12, therein) the above procedure was applied to 
the experimental tilt-rotor blade flatwise bending moments. In the above 
Ref. 2 example, the subject test data points were not repeatable, possibly 
because of instrumentation problems. 

The application ofneural networks to full-scale lilt-rotor noise data is 
conducted using the neural networks package NeuralWorks Pro ITPLUS 
(version 5.2) by Neuralware (Ref. 10). The present neural network RMS 
error is dimensionless and based on the squares of the errors for each 
pmcessingelemer~t (PE) in the outpnt layer. Any large differences in the 
~nagnitudes of the neural network variables are mitigated by appropriate 
scaling. In the present application, the cost function used in minimizing 
the RMS error has equally weighted individual contributions. 

The results from the neural network study using full-scale XV-15 tilt- 
rotor noise data are presented below. The noise is characterized using a 
BVISPL measure (blade-vortex-i~~teraction sound oressure level. 30th to 
150th rotorharmonics, dB). Fortest conditions involving traverse sweeps, 
the corresponding database consisted 01-96 points (measurements at 12 
traverse locations using 8 microphones). The largest (complete) noise 
database considered it, this study has over 4000 data points (Ref. 8). The 
neural network inputs and output(s) depend on the specific application 
under consideration and are given later. 

Neural network based data quality assessment 

An overall assessment of the quality of the wind tunnel noise data 
is obtained by considering the complete noise database. This complete 
database includes over 4000 data ooints. which are used as trainine data u 

for the neural networks. The five wind tunnel test paratneters used as the 
neural network inputs are: advance ratio, I*, shaft angle, a,, thrust coefi- 
cient ratio, CT/a,  the microphone traverse location, and the microphone 
position within the traverse. Since the positions of the eight mic~.ophoaes 
are fixed with respect to the traverse, an eqltivalent tnicrnphone t~utnber 
can also be used. 

Compared to the neural network tilt-rotor performance application 
reponedin Ref. 2, which involvedapproximately 300 trainingdatapoints, 
the present, complete, experimental noise database is relatively larger. 
Thus, the present data quality assessment procerlure is split up into two 
steps.The first step involvescoarsecorrelation curve fits. The second step 
involves fine correlation curve hts, and involves more complex networks 
and a larger number of training iterations. In contrast to a representation 
type of application, the coarse data quality assessment application does 
not require the neural networks to produce accurate curve fits. In the data 
quality assessment examples that follow, the coarse and fine error bands 
are +/-4 dB and +/-2 dB, respectively. 

Conrse rlntrr-qanlit.~~-nssess~r~e~~f. The results from the coarse correlation 
step are shown in Figs. I to 3. Figure 1 shows the correlation plot from 
a MISO 5-25-5-1 RBF neural network using the complete, experimental 
noise database as the training database. The RBF network is trained for 
4 million iterations with a final RMS error of 0.07. For the results shown 
in Fig. 1, correlation points far away from the 45 deg correlation line are 
judgedas the bad test datapoints.These bad testdata points aredenoted in 
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Fig. 1. Coarse correlation, complete noise database (over 4000 
points). 

Test Noise, d B  (BVISPL) 

Fig. 2. Coarse correlation, eight points ( a ,  = 1 5  deg, point 25, run 
139) omitted. 

the figure by theopen circle symbols. Adetailed examination of the noise 
database shows that these bnd ooints are from test ooint 25 of mn 139. 
The test parameters for this test condition are: AL =O. 169, a, = 1 5  deg, 
and CT/o =0.06. The test Run Log for run 139 notes the presence of 
"gusty south winds affecting p and CT/o:' which could adversely affect 
data quality i n  an open circuit wind tunnel. 

Figure 2 shows thecoarsecorrelation plot obtained by usingatraining 
database in which the eight microphone measurements from test point 
25 of run 139 (a,=-15 deg) are omitted from the complete training 
database. In this figure the correlation plot from a MISO 5-25-5-1 REF 
neural network are shown. The RBF network is trained for 4 million 
iterations with a final RMS error of 0.06. Figure 2 does not contain the 
bad points seen in Fig. 1. 

Figure 3 shows the coarse correlation plot obtained by using a training 
database in which all us= -15 deg points (I52 in number) are omitted 
from the complete training database. Thecorrelation plot is from a MIS0 
5-25-5.1 REF neural network. The RBF network is trained for 4 million 
iterations with a final RMS error of 0.08. Figures 2 and 3 are similar in 
that no outstanding bad points can be seen. Thus, the bad data points 
(open circles) seen in Fig. 1 are associated with only one test condition, 
point 25 of run 139. Figures I to 3 demonstrated the ability of neural 
networks to identify noise data of poor quality. 

Test Noise, d B  (BVISPL) 

Fig. 3. Coarse correlation, all a, = -15 deg points omitted. 

Test Noise, d B  (BVISPL) 

Fig. 4. Fine correlation, database same as in Fig. 2, over 4000 points. 

Fifre clofnm-qso1if.y-nrsess~~lerrt. Figure 4 shows the line correlation plot 
obtained by using the same database as that was used i n  Fig. 2. The 
eight microphone measurements arising from test point 25 of run 139 
(a, = - 15 deg) are on~itted from the complete training database. The 
correlation plot is from a MISO 5-75-25-1 back-propagation neural net- 
work. This morecomplex back-propagation network is trained for 8 mil- 
lion iterations (double the number used in the coarse correlation step) 
with a final RMS error of 0.02. It is seen that the quality of the noise data 
is acceptable to within a +/-2 dB band. The representation aspects of 
this result are discussed below. 

Neural network representations 

Co,nplere fesf ~l<,fnbase ,i~p,rsr,ttofiorr. The preceding result in Fig. 4 
also demonstrates the ability of neural networks to represent the 
experimental noise data within an acceptable level of accuracy 
(+/-2 dB), and involves over4000 datapoints. TheContourPlots section 
given later contains a comparison of the neural-network-based contour 
based on the above "+/-2 dB" representation with the test data contour. 

Serrsitivity to festco,tdifio~~s. Variations in advance ratio and thrustcoefli- 
cieot are separately treated. A near maximum BVI condition ( p  = 0.170, 
a, = 3  deg, and CT/o =0.091) is taken as the baseline test condition 
about which the variations are considered. 
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Test Noise, dB (BVISPL) 

Fig. 5. Correlation, forward speed variation. 

Fonvord speed ~aarinfiol. Three advance ratios are considered (I* = 
0125, 0.170, and 0.2001, each with a , = 3  deg and C ~ / u = 0 . 0 9 1 .  The 
three neural network inputs are the advance ratio, the traverse location, 
and the microphone position. Figure 5 shows the col-rclation plot from 
a MIS0 3-15-5-1 back-propagation neural network involving approxi- 
mately 300 training data points. The back-propagation network is trained 
Tor 1 millioniterations with a finalRMS errorof0.02. The neural network 
representation is acceptable to within +/-I dB. 

Tlzr.r!sr ~~nriolio,~. Four thnlst coefficient ratios are considered (CT/u = 

0.060, 0.075, 0.091, and 0.100), each with I* =0.170 and a, = 3  deg. 
The three neural network inputs are the thmst coefficient ratio, traverse 
location, and the microphone location. Figure 6 shows the correlatiotl 
plot from a MISO 3-15-5-1 back-propagation neural network involving 
approximately 400 training data points. The back-propagation network 
is trained for I million iterations with a final RMS error 01 0.04. Here as 
well, the neural network representation is acceptable to within +/-I dB. 

Co~trorrrl~lots. Neural-network-based contour plots are obtained at atilt- 
rotor operating condition involving maximum blade vortex interaction 
(IL =0.200, a, = 4 deg. and CT/u = 0.075). The corresponding experi- 
~nentalnoisecontourwith 96data pointsis showninFig. 7(a) (theapprox- 
imate rotor circle is also shown ia the figure). A particular contour point 
is identified by its microphone number (I to 8) and its traverse location. 
This casc involves 96 neural network training points. The microphone 
traverse location and the micro~hone oosition are the two neural network 
inputs. The BVISPL noise measure is the single neural network output. 

Figure7(b) shows therepresentation forthe 100% casc using aradial- 
basis function (RBF) neural networkand t~ainingdatafrom all 12 traverse 
lk~c:.tion\ (l~l!~~~Ivlng 90 lcht potnt\). S [ ~ c c ~ l l ~ ~ I l y ,  thc cololc#l.r plc4 fro111 
:I MIS0 2 2X 7 1 KBF ~~uor;jl ~t;luc~rk I\ ~ I I O ~ Y I I .  TI): l<l3l .  nr.la,<>rk I\ 

trained for 4 million iterations with a final RMS error of 0.02. This RBF 
neural network representation is accurate. 

Figure 8(a) shows the representation for the 50% case using an RBF 
neural network and training data from six traverse locations (involving 
48 test points). This 50% case is important because halving the number 
of traverse locations reduces the run time by approximately 50% per 
traverse sweep. The six traverse locations are selected by starting out 
with the 275-inch traverse location and selecting every other location. 
Here also, the contour plot from a MISO 2-28-7-1 RBF neural ~~e twork  

Test Noise, dB (BVISPL) 

Fig. 6. Correlation, thrust variation. 

Figure 8(b) shows a represet~tation for the 50% case using a back- 
propagation neural network. In particulat; the contour plot from a MISO 
2-28-12-1 back-propagation neural network is presented. The back- 
propagation network is trained for 800,000 iterations with a final RMS 
errorof0.02. Thesecondary hotspotinFig. 8(b) (120 to 121 dBrange) has 
erroneouslv snread out near the 0-inch tt-averse location. It em~neouslv , . 
involves an additional microphone, No. 4. Consequel~tly, the RBF 50% 
representation. Fig. 8(a), is closer to the test data. The back-propagation 
neural network representation is thus not as accurate as the RBF neural 
network representation. 

It should be noted that Fig. 7(a) shows a +/-I dB-resolution coo- 
tour plot based on test data acquired at the maximum BVI condition. 
The corresponding contour plot extracted from the +/-2 dB neural net- 
work representation of the complete database (discussed earlier, Fig. 4) 
is shown in Fig. 9. The neural-network-based contour obtained using the 
comolete. exoerimental database is considered to be reasonable and to , . ,  
have captured the essential hot spot. 

Prediction of noise 

In this section, neural networks are used to pledict noise at a test 
condition not included in the neural network training database. This is 
illustrated as follows. 

The presently considered, complete, experimental noise database in- 
cludes 21 sets of data obtained from traverse sweeps (corresponding to 
21 test conditions). A single test condition is presently defined by the 
thcec parameters: p .  a,, and CT/v. The noise curve based on an eight- 
microphone measurement acquired at the 125-inch traverse location is 
taken as the reference curve. These three test condition parameters and 
the eight reference curve noise values formed the neural network inputs, 
thus uniquely defining the complete noise map. Thus, the subject neu- 
ral network has 11 inputs. Noise predictiotls (neural network outputs) 
are required at 1 I traverse locations (i.e., at traverse localions other than 
the reference traverse location), and the subject neoral network with the 
eight-microphone setup has 88 outputs. The above definition of the sub- 
ject problem is direct and involves the smallest amount of input data. 
Also, the present neural network tilt-rotor noise-application with I I in- 
puts and 88 outputs, is a good test case. The test case results would 
detennine whether neural networks could efficiently model and predict 
the full-scale tilt-rotor, multi-dimensional, nonlinear noise variations. 

An examination of the above 21 test conditions shows that the fol- 
lowing near maximum BVItest condition with =0.170, a , = 3  deg, 
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Fig. 7. (a) Experimental tilt-rotor noise at maximum BVI condition. (b) Radial-basis function (RBF) neural network tilt-rotor noise a t  maximum 
BVI condition, "100%" case. 
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Fig. 8. (a) Radial-basis function neural network tilt-rotor noise a t  maximum BVI condition, ''50%'' case. (b) Back-propagation neural network 
tilt-rotor noise a t  maximum BVI condition, "50%" case. 

and CT/O =0.091 is an appropriate choice for a neural-network-based condition. The neural network model is obtained from a MIMO 11-25- 
prediction of the noise. This selection is based on the availability of test 10-88 back-propagation neural network. The back-propagation network 
data at =0.125, 0.170, and 0.200 at the above shaft angle and thrust is trained for 50,000 iterations with a final RMS error of 0.02. Subse- 
coefficient ratio. The test data used to evaluate the predictive capability quently, it is found that the present neural network predictions and the 
is not used in the training. The neural network training database con- experimentalnoisedataat the selected test condition are within +/-I dB 
sists of noise data from 20 test conditions, excluding the above selected of each other. The corresponding correlation plot is shown in Fig. 10(a). 




